
Bitflip’s Leetcode Pattern Recognition Cheat Sheet
(Version 1)

Print this out, keep it by you, but not during your interview 😉

Step 1: Check The Constraints
Small n (≤ 20):

●​ Brute force approaches are viable
●​ Backtracking and recursion
●​ Exponential time complexity (2^n, n!) is acceptable
●​ Try all possible combinations/permutations

Medium n (10^3 to 10^6):
●​ ❌ No brute force solutions
●​ Linear time O(n) or O(n log n) solutions
●​ Greedy algorithms
●​ Two pointers technique
●​ Heap-based solutions
●​ Dynamic programming

Large n (≥ 10^7):
●​ ❌ No linear time solutions
●​ O(log n) solutions only
●​ Binary search
●​ Mathematical formulas
●​ O(1) constant time approaches

Step 2: Analyze Input Format
Tree/Binary Tree/BST:

●​ Tree traversal (DFS/BFS)
●​ DFS for: all paths, recursive exploration,

preorder/inorder/postorder

https://www.youtube.com/@bitflipdev

●​ BFS for: level-by-level, shortest path in
unweighted tree

●​ Consider: tree properties, parent-child
relationships

Graph (nodes + edges):
●​ BFS for shortest path
●​ DFS for connected components
●​ Union Find for "connected components" or "number of

groups"
●​ Topological sort for dependencies

2D Grid/Matrix:

●​ DFS/BFS for "islands" problems
●​ Union Find for connected regions
●​ Dynamic programming for path problems
●​ Consider: 4-directional or 8-directional movement

Sorted Array:

●​ Two pointers technique
●​ Binary search
●​ Greedy approach

String:

●​ Two pointers for palindromes
●​ Sliding window for substrings
●​ Trie for word problems
●​ Stack for parentheses/brackets

Linked List:

●​ Two pointers (fast/slow)
●​ Dummy node techniques
●​ Cycle detection

Step 3: Analyze Output Format
List of Lists (combinations, subsets, paths):

●​ Backtracking is almost always the answer
●​ Generate all possibilities
●​ Use recursion with choice/no-choice pattern

Single Number (max/min profit, cost, ways, jumps):
●​ Dynamic Programming for optimization
●​ Greedy for local optimal choices
●​ Mathematical approach for counting

Modified Array/String (in-place operations):

●​ Two Pointers for in-place modifications

Ordered List (sorted sequence, valid task order):

●​ Sorting with custom comparators
●​ Topological Sort for dependencies
●​ Heap for maintaining order

Step 4: Keyword Pattern Recognition
Dynamic Programming Keywords:

●​ "Number of ways"
●​ "Maximum/minimum" + "sum/profit/cost"
●​ "Can you reach"
●​ "Longest/shortest subsequence"
●​ "Optimal" or "best"

Two Pointers Keywords:

●​ "Palindrome"
●​ "Sorted array"
●​ "Target sum"
●​ "Remove duplicates"

Heap Keywords:

●​ "K largest" or "K smallest"
●​ "Top K elements"
●​ "Median"
●​ "Priority"

Stack Keywords:

●​ "Parentheses" or "brackets"
●​ "Valid expression"
●​ "Nested structure"
●​ "Undo operations"

Monotonic Stack Keywords:

●​ "Next greater element"
●​ "Next smaller element"

HashMap Keywords:

●​ "Count frequency"
●​ "Find duplicates"
●​ "Anagram"

Trie Keywords:

●​ "Word search"
●​ "Word prefixes"

Greedy Keywords:

●​ "Minimum operations"

Union Find Keywords:

●​ "Connected components"
●​ "Number of groups"

Binary Search Keywords:

●​ "Kth element"

●​ "Search in sorted"
●​ "Minimize maximum"
●​ "First/last occurrence"

Bit Manipulation:

●​ "XOR" operations
●​ "Single number" problems
●​ “Power of 2”

Math/Geometry:

●​ "Greatest/Least Common Denominator"
●​ "Prime numbers"
●​ "Angle calculations"
●​ “Coordinate”

Game Theory:

●​ "Optimal strategy"
●​ "Win/lose scenarios"
●​ "Minimax"

Sliding Window:

●​ "Substring" with conditions
●​ "Subarray" with fixed/variable size
●​ "Maximum/minimum window"
●​ "Contains all"

	Small n (≤ 20):
	Medium n (10^3 to 10^6):
	Large n (≥ 10^7):
	Step 2: Analyze Input Format
	Tree/Binary Tree/BST:
	Graph (nodes + edges):
	2D Grid/Matrix:
	Sorted Array:
	String:
	Linked List:

	Step 3: Analyze Output Format
	List of Lists (combinations, subsets, paths):
	Single Number (max/min profit, cost, ways, jumps):
	Modified Array/String (in-place operations):
	Ordered List (sorted sequence, valid task order):
	Bit Manipulation:
	Math/Geometry:
	Game Theory:
	Sliding Window:

